Characteristic Behavior of Polymer Electrolyte Fuel Cell Resistance during Cold Start
نویسندگان
چکیده
In this study, experimental constant-current cold starts were performed on a polymer electrolyte fuel cell from −10°C to characterize high-frequency resistance behavior, water motion, and ice accumulation before, during, and after cold start. A diagnostic method for rapid and repeatable cold starts was developed and verified. Cold-start performance is found to be optimized when cell resistance is increasing prior to startup, which is indicative of polymer electrolyte membrane PEM dehydration. During cold start, cell resistance initially decreases due to PEM hydration by the product water. Interestingly, after a certain water-uptake capacity of the PEM is reached, resistance increases due to ice formation in and around the cathode catalyst layer CL , with some evidence of supercooled water flow at low currents. Utilizing lower startup currents apparently does not increase the PEM water-storage capability but does increase the total volume of ice formation in and around the CL. Lower startup currents were found to produce more total heat but at a reduced rate compared to high currents. Therefore, an acceptable current range exists for a given stack design which balances the total heat generation and time required to achieve a successful cold start. © 2008 The Electrochemical Society. DOI: 10.1149/1.2975189 All rights reserved.
منابع مشابه
Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures
In this investigation, a parametric study was performed using the transient cold-start model presented in our previous paper, in which the ice melting process and additional constitutive relations were newly included for transient cold-start simulations of polymer electrolyte fuel cells (PEFCs) from a sub-zero temperature (-20°C) to a normal operating temperature (80°C). The focus is placed on ...
متن کاملPii: S0079-6700(00)00032-0
This paper presents an overview of the synthesis, chemical and electrochemical properties, and polymer electrolyte fuel cell applications of new proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Due to their chemical stability, high degree of proton conductivity, and remarkable mechanical properties, per ̄uorinated polymer electrolytes such as Na®on, Aciplex, Flemion...
متن کاملNumerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance
Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...
متن کاملOptimization of Polymer Electrolyte Membrane Fuel Cell Performance by Geometrical Changes
Three-dimensional computational fluid dynamics in house-code of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been developed. The conservation equations are numerically solved using finite volume technique. One of the important goals of this research is the investigation of the variation of bipolar plates width effect on the fuel cell performance compared with the conventional m...
متن کاملPerformance Evaluation of SBS/sulfur Modified Bitumen and its Effect on Fuel Resistance
The fuel resistance property plays an important role in asphalts, but available standards for determining this characteristic are presently lacking. In the present work, a number of polymer modified bitumen with styrene-butadiene-styrene (SBS) polymer (4, 5, 6% SBS) and SBS/ sulfur modified bitumen with various percentages of sulfur (1.65, 3, 3.5% based on polymer content) were prepared. Each s...
متن کامل